Какие державы владеют системой космического контроля пространства. Космический мусор превысил критическую массу, уверяют эксперты. Кого коснётся этот запуск

Войска воздушно-космической обороны (ВВКО) решают широкий спектр задач, основными из которых являются:

  • обеспечение высших звеньев управления достоверной информацией об обнаружении стартов баллистических ракет и предупреждение о ракетном нападении;
  • поражение головных частей баллистических ракет вероятного противника, атакующих важные государственные объекты;
  • защита пунктов управления (ПУ) высших звеньев государственного и военного управления, группировок войск (сил), важнейших промышленных и экономических центров и других объектов от ударов средств воздушно-космического нападения (СВКН) противника в пределах зон поражения;
  • наблюдение за космическими объектами и выявление угроз России в космосе и из космоса, а при необходимости - парирование таких угроз;
  • осуществление запусков космических аппаратов на орбиты, управление спутниковыми системами военного и двойного (военного и гражданского) назначения в полёте и применение отдельных из них в интересах обеспечения войск (сил) Российской Федерации необходимой информацией;
  • поддержание спутниковых систем военного и двойного назначения, средств их запуска и управления в установленном составе и готовности к применению.

Создание Войск воздушно-космической обороны потребовалось для объединения сил и средств, отвечающих за обеспечение безопасности России в космосе и из космоса, с воинскими формированиями, отвечающими за противовоздушную оборону (ПВО) страны. Это было вызвано объективной необходимостью интеграции под единым руководством всех сил и средств, способных вести борьбу в воздушной и космической сфере, исходящей из современных мировых тенденций вооружения и перевооружения ведущих стран к расширению роли воздушно-космического пространства в обеспечении защиты государственных интересов в экономической, военной и социальной сферах.

С 1 декабря 2011 г. Войска воздушно-космической обороны во взаимодействии с силами и средствами противовоздушной обороны военных округов заступили на боевое дежурство с задачей защиты территории страны от ударов средств воздушно-космического нападения.

С введением в строй ВВКО в России прекратили существование Космические войска. Воздушно-космическая оборона создавалась на базе Космических войск, а также войск оперативно-стратегиче-ского командования воздушно-космической обороны.

Объекты ВВКО расположены по всей территории Российской Федерации - от Калининграда до Камчатки, - а также за её пределами. В странах ближнего зарубежья - Азербайджане, Белоруссии, Казахстане и Таджикистане - дислоцированы объекты систем предупреждения о ракетном нападении и контроля космического пространства.

В состав Войск воздушно-космической обороны входят:

  • космическое командование;
  • командование противовоздушной и противоракетной обороны;
  • космодром Плесецк.

Космическое командование включает в себя силы и средства систем контроля космического пространства, управления орбитальной группировкой, а также системы предупреждения о ракетном нападении.

Силы и средства воздушно-космической обороны

На систему предупреждения о ракетном нападении (СПРН) возлагаются задачи получения и выдачи информации предупреждения о ракетном нападении на пункты государственного и военного управления, формирования необходимой информации для системы противоракетной обороны и выдачи данных о космических объектах на систему контроля космического пространства.

В настоящее время система предупреждения о ракетном нападении обеспечивает полный контроль всех ракетоопасных направлений.

Система противоракетной обороны осуществляет обнаружение целей и поражение боевых блоков межконтинентальных баллистических ракет (МБР) противоракетами с исключением детонации их зарядов.

Система контроля космического пространства (ККП) является уникальной. Контролировать космос могут только две державы - Россия и США. В главном каталоге системы ККП Российской Федерации содержится информация почти о 9 тыс. космических объектов.

Силы и средства ККП во взаимодействии с информационными средствами систем ПРН, ПРО и другими информационными системами выполняют задачи контроля космического пространства и выдачи информации о космической обстановке на пункты управления государственного и военного руководства. Системой определяются характеристики и назначение всех космических аппаратов, а также состав орбитальных группировок космических систем России и иностранных государств с их распознаванием.

Войска воздушно-космической обороны оснащены ракетами-носителями, командно-измерительными системами, радиолокационными станциями, оптико-электронными комплексами.

Выводы

  1. Войска воздушно-космической обороны - новый род войск, входящий в Вооружённые Силы Российской Федерации.
  2. Войска воздушно-космической обороны обеспечивают контроль космического пространства.
  3. В основные задачи Войск воздушно-космической обороны входит уничтожение баллистических ракет противника, атакующих объекты и войска в обороняемых районах.
  4. Войска воздушно-космической обороны выполняют разведывательные функции, собирая необходимую информацию для противоракетной обороны нашей страны.

Вопросы

  1. В чём состоит основное предназначение Войск воздушно-космической обороны?
  2. Какие космодромы Министерства обороны Российской Федерации вы можете назвать?
  3. Что входит в задачи Войск воздушно-космической обороны?
  4. Почему контроль космического пространства с использованием сил и средств Войск воздушно-космической обороны так важен для Российской Федерации? Обоснуйте свой ответ.

Задания

  1. Подготовьте сообщение о силах и средствах ракетно-космической обороны страны.
  2. Используя специальную литературу, подготовьте сообщение о космодроме «Плесецк».


Главная Структура Вооруженные Cилы РФ Воздушно-космические силы К 50-летию ракетно-космической обороны России Контроль космического пространства

Основной задачей системы контроля космического пространства является разведка военно-космических систем вероятных противников, обнаружение военных действий в космосе и из космоса, а также доведение информации о космической обстановке до руководства страны и Вооруженных Сил Российской Федерации и информационное обеспечение безопасности космической деятельности Российской Федерации.

Системой определяются характеристики и назначение всех космических аппаратов на высотах более 50 000 километров, состав орбитальных группировок космических систем России и иностранных государств с их распознаванием, а также признаки начала боевых действий в космосе и из космоса.

Наиболее эффективные средства СККП - это оптико-электронный комплекс «Окно», способный автономно в автоматическом режиме решать задачи контроля космических объектов на высотах от 2 000 км до 50 000 км, сбора по ним информации и ее выдачи на командные пункты, и радиооптический комплекс распознавания космических объектов «Крона».

По внешним целеуказаниям комплекс «Окно» также способен обеспечить контроль низкоорбитальных космических объектов с высотами полета от 120 до 2 000 км. Кроме того, комплекс может использоваться для экологического мониторинга космического пространства.

В свою очередь, комплекс «Крона» осуществляет обнаружение и фиксацию параметров траекторий объектов на низкой околоземной орбите, каталогизацию их характеристик и распознавание новых искусственных спутников Земли.

Основные задачи, решаемые Системой контроля космического пространства:

  1. Оперативная оценка и прогнозирование опасных изменений в околоземном космическом пространстве путем непрерывного контроля космического пространства, определения состава и состояния группировок военно-космических средств иностранных государств; контроля испытаний таких средств и развертывания противоспутниковых, противоракетных и ударных группировок.
  2. Ведение Главного каталога космических объектов - распознавание космических объектов, в том числе селекция, идентификация и определение их целевого назначения и государственной принадлежности. Автоматическое установление фактов запуска, маневра и схода космических объектов с орбиты, определение и систематическое уточнение параметров их орбит.
  3. Оценка обстановки на трассах полета отечественных космических аппаратов, прогнозирование опасных для них ситуаций, создаваемых различными космическими объектами и средствами противокосмической обороны. Оценка состояния отечественных космических аппаратов в аварийных ситуациях.
  4. Формирование и выдача на командные пункты информации о космических объектах, состоянии и изменениях космической обстановки.
  5. Обеспечение Системы предупреждения о ракетном нападении информацией о каталогизированных космических объектах в интересах снижения вероятности формирования ложной информации предупреждения о ракетном нападении.

Боевое дежурство средств СККП является выполнением боевой задачи государственной важности и несется круглосуточно. Профессионализм, высокое чувство ответственности за порученное дело, верность традициям старших поколений лежат в основе безусловного и надежного выполнения боевой задачи личным составом дежурных смен.

История создания системы контроля космического пространства

На заре активного освоения космического пространства возникла необходимость создания специальных средств наблюдения и обработки измерительной информации, которые позволяли бы определять орбиты иностранных и отечественных космических аппаратов (КА) с отказавшей или отработавшей свой ресурс бортовой аппаратурой, а также фрагменты ракет-носителей, вышедшие на орбиту. В совокупности эти средства и стали называться системой контроля космического пространства

В 1962 г. ЦК КПСС и СМ СССР приняли Постановление «О создании отечественной службы контроля космического пространства».

Первыми специализированными средствами контроля космического пространства стали радиолокационные станции «Днестр» системы предупреждения о ракетном нападении, размещенные в Казахстане (близ озера Балхаш) и Сибири (в районе Иркутска). Их общая работа позволяла создать линию наблюдения протяженностью в 5 000 км на высотах до 3 000 км. Впоследствии всего было задействовано восемь таких РЛС.

В январе 1970 г. Центр контроля космического пространства (ЦККП) заступил на боевое дежурство. В ту пору возможности ЦККП позволяли сопровождать до 500 космических объектов на высотах до 1500 км - это составляло лишь 10-15% от числа спутников, находящихся на околоземных орбитах.

В последующие годы принимались меры по расширению радиолокационного поля, модернизации РЛС и созданию в интересах Центра специализированных средств разведки и распознавания космических объектов.

По мере усложнения обстановки в космосе были развернуты активные работы по совершенствованию ЦККП и его преобразованию в командный пункт системы контроля космического пространства.

На первом этапе, в 1974 году, для этого была обеспечена связь ЦККП с информационными средствами систем предупреждения о ракетном нападении (ПРН) и противоракетной обороны (ПРО). Зона контролируемого космического пространства резко расширилась - к 1976 г. ЦККП уже сопровождал более полутора тысяч космических объектов, что составляло 30% от их общего количества.

При этом значительно повысилась достоверность информации, формируемой системой ПРН, так как появилась возможность ведения полного каталога космических объектов, пролетающих над территорией страны, который позволил значительно снизить вероятность ложного предупреждения путем отбраковки траекторий полета снижающихся и сгорающих в плотных слоях атмосферы космических объектов.

Кроме того, появились реальные возможности своевременной и надежной выдачи соответствующих целеуказаний комплексу противокосмической обороны в целях перехвата космических аппаратов, атакующих территорию страны.

В дальнейшем степень контроля объектов, находящихся в космическом пространстве, непрерывно возрастала - к 1980 г. ЦККП получил возможность прогнозирования мест падения космических объектов и сопровождал более половины всех орбитальных объектов.

Тогда же, в 1980 году, было принято решение о дальнейшем развитии Системы ККП с поэтапным вводом в ее состав специализированных средств контроля космического пространства: оптико-электронных и радио-оптических комплексов распознавания космических объектов, а также средств пеленгации излучения космических аппаратов. Создание специализированных средств ККП позволило существенно улучшить оперативность и эффективность распознавания космических аппаратов.

Оптико-электронная станция из состава ОЭК «Окно»

В 1986 г. средствами СККП сопровождалось уже более 4 тысяч космических аппаратов и их элементов на высотах до 3500 км.

В 1988 г. было образовано соединение контроля космического пространства, призванное обеспечить оперативное управление всеми силами и средствами, позволяющими всеобъемлюще контролировать космическое пространство, и своевременно обнаружить начало военных действий в космосе.

Соединение ККП имеет в своем составе командный пункт, Центр контроля космического пространства, специализированные радиолокационные и оптико-электронные комплексы. На Центр контроля космического пространства возлагается задача непрерывного ведения Главного каталога космической обстановки и выдача оперативных данных о ней на главные командные пункты страны.

В 1999 году была поставлена в опытную эксплуатацию первая очередь оптико-электронного комплекса «Окно» (г. Нурек, Таджикистан). В 2000 году завершены испытания и сдана в эксплуатацию войскам первая очередь радиооптического комплекса «Крона» (ст. Зеленчукская, Карачаево-Черкесская Республика).

В настоящее время работы по совершенствованию Системы контроля космического пространства продолжаются.

14.09.2017

Автор статьи полковник Оляндер Лафарг Константиновича, будучи лейтенантом, участвовал в составе радиолокационного поста в работах по обнаружению и слежению за полётом Первого спутника Земли, а затем и полёта Ю.А. Гагарина.
После окончания Артиллерийской радиотехнической Академии ПВО в 1966 году был направлен для прохождения службы в Центре контроля космического пространства (ЦККП). где в течение последних 12 лет командовал отделом Главного каталога космических объектов.
После выхода на пенсию, 25 лет работал в МАК "Вымпел". Автор ряда книг, посвященных созданию и работе ЦККП и отдельных его частей. В настоящее время работает инженером в ЦККП.

Проблема контроля космоса возникла не только в Советском Союзе, она была характерна и для других стран, в частности, США, Западной Европы, Китая. Поэтому работы по организации контроля космического пространства в основных странах начались практически одновременно. Собственных специализированных средств наблюдения за космическим пространством в стране, да и в мире в целом, в то время не было. Еще в 1956 г. советское правительство своим постановлением обязало АН СССР создать сеть наблюдательных станций и организовать подготовку наблюдателей. Созданием сети наблюдательных станций от АН СССР руководил академик М.В.Келдыш, а непосредственную ответственность нес Астросовет АН СССР в лице заместителя председателя А.Г.Масевич. Для решения поставленной задачи было решено использовать находящиеся в системе АН СССР, а также в высших учебных заведениях страны астрономические приборы. Имевшиеся в крупных обсерваториях телескопы для слежения за низкоорбитальными космическими объектами не могли быть использованы из-за больших угловых скоростей космических объектов. В результате на базе Астрономического совета АН СССР и высших учебных заведений была создана сеть из более 100 станций оптического наблюдения (СОН), которые осуществляли обнаружение и слежение (по целеуказаниям) за полетом космических объектов (1 октября 1957 г. к работе были готовы 66 станций). Необходимо было в короткие сроки научиться обнаруживать космические объекты, распознавать и сопровождать их с требуемой точностью на фоне звездного неба.
В мае-августе 1957 г. в г. Ашхабаде проходили сборы по обучению наблюдателей искусству обнаружения и сопровождению искусственных космических тел. Руководителем этих занятий стал руководитель Звенигородской станции А.М.Лозинский.
Вот как об этом пишет профессор А.Г.Масевич: «Летом 1957 года все руководители станций прошли специальную подготовку на курсах, созданных при Ашхабадской астрофизической обсерватории. Занятия проводили работники Астрономического совета и Ашхабадской обсерватории, хотя и имеющие большой опыт в наблюдениях звезд, планет и метеоров, но никогда еще (как, впрочем, и все население земного шара) не имевшие дела с искусственными космическими объектами. Много было тогда еще не ясно, и слушатели вместе с преподавателями дружно старались воссоздать, хотя бы приблизительно условия видимости будущего спутника, чтобы научиться наблюдать его по возможности точно. Так большим успехом пользовалась следующая «имитация», предложенная А.М.Лозинским. Один из участников с длинным шестом, к концу которого был прикреплен зажженный фонарь, взбирался вечером на гору и быстро шагал, стараясь не очень раскачивать фонарь. Внизу, в саду обсерватории, наблюдатели на фоне звездного неба видели движущийся яркий огонек и определяли его положение с помощью биноклей или небольших астрономических «спутниковых» трубок, специально созданных для этих целей. Впоследствии, когда началась подготовка наблюдателей на станциях, было проведено несколько учебных тренировок. Самолеты с имитирующими спутник огнями пролетали над станциями, создавая более совершенную иллюзию искусственного спутника. Основным инструментом на станциях были созданные по заказу Астросовета трубки АТ-1. Это небольшие широкоугольные телескопы с диаметром входного зрачка 50 мм, шестикратным увеличением и полем зрения 11°»
В августе 1957 г. поступило распоряжение: доложить о готовности сети к работе. До запуска первого спутника Земли оставалось два месяца.
Началась повседневная, кропотливая работа по организации и проведению наблюдений за искусственными спутниками Земли и использованию этих наблюдений для исследований в области космической геодезии, геодинамики и геофизики. Первоначально обработка координатной информации проводилась сотрудниками Астросовета с использованием вычислительных мощностей академии наук. При этом следует отметить, что часть наблюдательных станций находилась за пределами СССР, на территории социалистических стран, а также в ряде государств в Африке, Азии и Южной и Центральной Америки, что сказывалось на оперативности получения результатов наблюдений в центре обработки информации и планирования.

Основным организатором всех работ была Алла Генриховна Масевич - одна из выдающихся ученых нашей страны и мира, которые начинали дело контроля космоса. Она в течение 35 лет была заместителем председателя Астросовета. Благодаря ее энергии Астрономический Совет взял на себя весь груз ответственности по налаживанию работ создаваемых станций оптического наблюдения. Она болела душой за качество труда первых наблюдателей, в основном, из числа студентов астрономических и физических факультетов высших учебных заведений.
Особо следует отметить роль руководителя одной из лучших станций оптического наблюдения при Рязанском педагогическом институте доктора физико-математических наук, профессора В.И.Курышева, который руководил одной из самых лучших станций. Одним из первых организаторов слежения за космическими объектами был руководитель Звенигородской станции А.М.Лозинский. Ученый, талантливый экспериментатор, наблюдатель наивысшей квалификации, он объединил вокруг себя большую группу единомышленников, среди которых особенно выделялся молодой ученый Н.С.Бахтигараев, сменивший Александра Марковича на посту руководителя станции. В наши дни Н.С.Бахтигараев много сил и энергии отдает делу организации слежения за космическими объектами, особенно, когда речь заходит о геостационарной области космического пространства. Скромный, обаятельный человек, он всю свою сознательную жизнь посвятил служению контролю космического пространства. Звенигородская обсерватория и сегодня играет существенную роль в обнаружении и сопровождении геостационарных космических аппаратов. Серьезные исследования проводит коллектив этой станции в области загрязнения космического пространства космическим мусором. Станции оптического наблюдения под руководством А.М.Лозинского и В.И.Курышева на протяжении всего периода работы с ЦККП были в числе лучших станций.
Впоследствии приборы АТ-1 были заменены модернизированными приборами БМТ-110М (бинокулярная морская труба). Модернизация приборов наблюдения производилась на Казанском оптико-механическом заводе. Получила развитие высокочувствительная телевизионная аппаратура. Такая установка, присоединенная к телескопу с диаметром зеркала 500мм, позволяла не только сфотографировать автоматические лунные и межпланетные станции на расстоянии до 80000км, но и следить за их движением на протяжении нескольких часов. Велись работы по разработке спутниковых лазерных дальномеров по программе «Интеркосмос». Они позволили бы измерять расстояния до спутников с точностью 10-20 см в полном автоматическом режиме и наблюдать космические объекты на высотах до 20000 км. Использование на отечественных космических аппаратах лазерных отражателей повысило точность измерений параметров КА Интеркосмос-17» (ошибка составляла всего 2-3 м).
В 1959 г. вблизи г. Звенигорода Московской области распоряжением Президиума АН СССР было создана Звенигородская экспериментальная станция Астросовета (в настоящее время Звенигородская обсерватория Института астрономии РАН), как основная базовая станция Астросовета АН СССР. Уже в 1961-62 гг. было получено с использованием камеры «Нафа-3с/25 около 4000 фотографий космических объектов, а применение камеры АФУ-75 (1968-1986гг.)– более 10000 снимков.
В 1964 году началось строительство лабораторного корпуса и трех астрономических башен, в одной из которых (самой большой) была смонтирована «Высокоточная астрономическая установка» (ВАУ), вступившая в строй в 1971 году. ВАУ по своим характеристикам превосходила все имеющиеся на тот момент времени камеры наблюдения, в том числе и знаменитую американскую камеру «Бейкер-Нанн». Она представляет собой автоматическую зеркально-линзовую систему Мусатова-Соболева. Основной задачей ВАУ было наблюдение космических объектов, находящихся на высокоэллиптических, высоких и геостационарных орбитах. Начиная с 1975 года с помощью ВАУ было получено около 3000 астронегативов, на которых обнаружено около 14000 изображений геостационарных спутников (ГСС), вычислено свыше 5000 точных их положений. По результатам обработки были составлены каталоги точных положений ГСС. В каталогах наблюдения были распределены в хронологическом порядке. Для каждой даты ГСС располагались в порядке возрастания долготы подспутниковой точки. При этом данные каталогов отличались высокой точностью как по времени (0.01 с), так по положению (0.1 угловой секунды).
Значение среднеквадратичной ошибки определения одного положения геостационарного объекта, полученное уравниванием ряда близких положений ГСС, на камере АФУ-75 составляло порядка 4с, а на ВАУ – около 1с. Еще одна ВАУ была установлена в Гиссарской обсерватории на территории Таджикистана.
Второй по значению в деле контроля космоса стала Симеизская научная база Астросовета, расположенная в 25 километрах от Ялты вблизи курортного поселка Симеиз. С 1973 года на этой базе начались систематические наблюдения космических объектов (в основном геостационарных) в соответствии с решением Президиума АН СССР. Коллектив стации активно участвует в проведении различных международных программах. Широкое применение получила разработанная в ГДР на предприятии «Карл Цейсс» камера СБГ, установленная на многих станциях наблюдения, в том числе и в Звенигороде и Симеизе.
Станции оптического наблюдения выполняли большой объем визуальных и фотографических, а позднее и лазерных наблюдений ИСЗ для решения задач геодезии, геофизики, эфемеридной службы и контроля космического пространства. Достаточно сказать, что за 10 лет работы станций оптического наблюдения было получено свыше 900 000 измерений более, чем по 500 советских и иностранных спутников и ракет-носителей (из этого числа более 400000 измерений прислано из-за рубежа, в том числе из Болгарии, Польши, Голландии, Финляндии, Италии и других стран). Это позволило утверждать, что уже на заре космической эры служба контроля космического пространства успешно справлялась с поставленными перед ней задачами.
Большая заслуга в организации работы системы слежения за космическими объектами принадлежит докторам физико-математических наук А.Г.Масевич и В.И.Курышеву (заведующий кафедрой Рязанского педагогического института).
Первый запуск искусственного спутника Земли в СССР произвел небывалый подъем гордости за свою страну и сильный удар по престижу США. Отрывок из публикации «Юнайтед пресс»: «90 процентов разговоров об искусственных спутниках Земли приходилось на долю США. Как оказалось, 100 процентов дела пришлось на Россию…». И несмотря на ошибочные представления о технической отсталости СССР, первым спутником Земли стал именно советский аппарат, к тому же его сигнал мог отслеживаться любым радиолюбителем. Полет первого спутника Земли ознаменовал начало космической эры и запустил космическую гонку между Советским Союзом и США.
Спустя всего 4 месяца, 1-го февраля 1958-го года США запустили свой спутник «Эксплорер-1», который был собран командой ученого Вернера фон Брауна. И хотя он был в несколько раз легче ПС-1 и содержал 4,5 кг научной аппаратуры, он все же был вторым и уже не так повлиял на общественность. Основным организатором всех работ была Алла Генриховна Масевич - одна из выдающихся ученых нашей страны и мира, которые начинали дело контроля космоса. Она в течение 35 лет была заместителем председателя Астросовета. Благодаря ее энергии Астрономический Совет взял на себя весь груз ответственности по налаживанию работ создаваемых станций оптического наблюдения. Она болела душой за качество труда первых наблюдателей, в основном, из числа студентов астрономических и физических факультетов высших учебных заведений.
Особо следует отметить роль руководителя одной из лучших станций оптического наблюдения при Рязанском педагогическом институте доктора физико-математических наук, профессора В.И.Курышева, который руководил одной из самых лучших станций. Василий Иванович внедрил много новшеств в работу своего детища. Так, например, чтобы наблюдатели более эффективно использовали время наблюдений, не переутомляясь, он в течение всей ночи по местной радиотрансляционной сети велел передавать мелодии легкой музыки. Это была не современная громоподобная музыка. Из репродукторов, расположенных непосредственно на наблюдательной площадке звучала тихая музыка. Как отличный психолог, он понимал, что этот прием дает людям возможность психологически отдыхать, и, как следствие, более эффективно работать. Он выпустил учебник по организации оптических наблюдений, который стал на долгие годы настольной книгой не только наблюдателей на СОН, но и для офицеров ЦККП. Изложенный в книге доступным языком материал позволял в короткие сроки людям, даже не имевшим солидной математической подготовки, осваивать основные принципы производства наблюдений за космическими объектами. На протяжении многих лет он руководил теоретической и практической подготовкой начальников ПОН ВПВО (Пункты оптического наблюдения Войск Противовоздушной обороны), проводимой на сборах вначале на ПОН в подмосковном поселке Мамонтовка, а позднее - в 12 учебном центре. Он искренне болел за качество подготовки начальников пунктов оптического наблюдения, старался за короткое время сборов (одна неделя) научить их не только качественно осуществлять руководство людьми при организации сеансов наблюдений за космическими объектами, но и самим осваивать искусство работы на оптических средствах.
В.И.Курышев стремился передать офицерам весь свой богатый опыт наблюдателя - теоретика и практика. На вооружении первых станций оптического наблюдения находились оптические приборы: АТ-1 (астрономическая трубка) и ТЗК (трубка зенитная командира). Это были приборы, позволявшие наблюдать космические тела, яркость свечения которых не превышала десятой звездной величины. Для справки: видимые человеческим глазом звезды имеют яркость не более шестой звездной величины, последняя звезда созвездия Большой Медведицы, именуемая Полярной звездой, светится, как звезда второй звездной величины. В.И.Курышев требовал от наблюдателей отличного знания карты звездного неба, устраивал своего вида контрольные занятия, когда его слушатели должны были безошибочно находить на небосклоне, или в звездном атласе необходимое созвездие или звезду, а их в атласе было зарегистрировано около 200 тысяч штук.
Одним из первых организаторов слежения за космическими объектами был руководитель Звенигородской станции А.М.Лозинский. Ученый, талантливый экспериментатор, наблюдатель наивысшей квалификации, он объединил вокруг себя большую группу единомышленников, среди которых особенно выделялся молодой ученый Н.С.Бахтигараев, сменивший Александра Марковича на посту руководителя станции. В наши дни Н.С.Бахтигараев много сил и энергии отдает делу организации слежения за космическими объектами, особенно, когда речь заходит о геостационарной области космического пространства. Скромный, обаятельный человек, он всю свою сознательную жизнь посвятил служению контролю космического пространства. Звенигородская обсерватория и сегодня играет существенную роль в обнаружении и сопровождении геостационарных космических аппаратов. Серьезные исследования проводит коллектив этой станции в области загрязнения космического пространства космическим мусором. Станции оптического наблюдения под руководством А.М.Лозинского и В.И.Курышева на протяжении всего периода работы с ЦККП были в числе лучших станций.
Впоследствии приборы АТ-1 были заменены модернизированными приборами БМТ-110М (большая морская труба). Модернизация приборов наблюдения производилась на Казанском оптико-механическом заводе. Однако эффективность работы СОН не в полной мере отвечала требованиям военных, так как наблюдателями были студенты, квалификация которых была недостаточно высокой. Наряду со своей основной задачей (наблюдения космических объектов) станции оптического наблюдения под руководством Астросовета участвовали во многих международных программах.
Для изучения влияния коротко-периодических проявлений солнечной активности на точность определения параметров орбит космических объектов необходимо было проводить наблюдения движения спутников по специальной программе на коротких промежутках времени. Такая международная программа наблюдений и исследований, получившая название «Интеробс», стала проводится в СССР в сотрудничестве с другими странами, начиная с 1963 года. Полученные квазисинхронные наблюдения низких спутников таких, как ракета-носитель «Космоса-54» и других объектов позволили определять периоды обращения с хорошей точностью на коротких (1-2 суток) интервалах времени и выполнить исследования их зависимости от вспышек на Солнце и магнитных бурь на Земле.
В конце 60-х годов оптические средства приступили к осуществлению программы «Атмосфера», основной целью которой уточнение навигационной привязки спутников. Фотографические наблюдения таких космических аппаратов, как «Полет-1», «Ореол-1» и «Интеркосмос» позволили повысить точность навигационной привязки примерно в 6-8 раз. Это имело большое значение при решении задач привязки научных экспериментов на спутниках.
В начале 70-х годов начались экспериментальные наблюдения автоматических межпланетных станций «Марс-1», «Луна-4», «Зонд-3» «Луна-7» на расстояниях от 100000 км до 150000 км. Для этого использовался телескоп Крымской астрофизической обсерватории АН СССР. Диаметр зеркала этого прибора составлял 2.6м. Получила развитие высокочувствительная телевизионная аппаратура. Такая установка, присоединенная к телескопу с диаметром зеркала 500мм, позволяла не только сфотографировать автоматические лунные и межпланетные станции на расстоянии до 80000км, но и следить за их движением на протяжении нескольких часов.
С начала 60- годов осуществлялись пробные работы по синхронным наблюдениям космических аппаратов с целью уточнения данных геодезической привязки наземных объектов методом космической триангуляции. Основным условием проведения этих работ было использование так называемой базы наблюдений (расстояние между пунктами, проводящих синхронные работы) от 3000-4000 км до 100000 км. Итогом было получение точных данных привязки наземных объектов, составлявших несколько десятков метров. Нет необходимости утверждать, насколько это было важно для обороноспособности страны.
Велись работы по разработке спутниковых лазерных дальномеров по программе «Интеркосмос». Они позволили бы измерять расстояния до спутников с точностью 10-20 см в полном автоматическом режиме и наблюдать космические объекты на высотах до 20000 км. Использование на отечественных космических аппаратах лазерных отражателей повысило точность измерений параметров КА «Интеркосмос-17» (ошибка составляла всего 2-3 м). В 1975 году с помощью фотографической камеры «АФУ-75» Симеизкой станции ВАУ Звенигородской обсерватории впервые были получены фотографии геостационарных спутников.
Прошло 60 лет со дня этого знаменательного события - запуска в Советском Союзе первого в мире Искусственного спутника Земли. И сегодня мы преисполнены гордостью за нашу советскую науку, доказавшую на деле, что наши ученые смогли сделать то, что оказалось не по силам зарубежным странам, в том числе и США. СЛАВА НАШЕЙ НАУКЕ, СЛАВА НАШИМ УЧЕНЫМ, КОНСТРУКТОРАМ!
Полковник Оляндер Л.К.,член совета ветеранов ККП и Постоянной комиссии ЦС СВКВ по социальной и правовой защите.

Урок 45

КОСМИЧЕСКИЕ ВОЙСКА, ИХ СОСТАВ И ПРЕДНАЗНАЧЕНИЕ

Предмет: ОБЖ.

Модуль 3. Обеспечение военной безопасности государства.

Раздел 5. Основы обороны государства.

Глава 14. Виды и рода войск Вооружённых Сил Российской Федерации.

Урок №45. Космические войска, их состав и предназначение.

Дата проведения: «____» _____________ 20___ г.

Урок провёл: учитель ОБЖ Хаматгалеев Э. Р.

Цель: рассмотреть состав и предназначение Космических войск.

Ход уроков

    Организация класса.

Приветствие. Проверка списочного состава класса.

    Сообщение темы и цели урока.

    Актуализация знаний.

    Для выполнения каких боевых задач предназначены Воздушно-десантные войска?

    Какие боевые возможности Воздушно-десантных войск вы можете перечислить?

    Какие известные подразделения входят в состав Воздушно-десантных войск?

    Как вы понимаете девиз ВДВ «Никто, кроме нас!»? Поясните свой ответ.

    Проверка домашнего задания.

Заслушивание ответов нескольких учеников на домашнее задание (по выбору учителя).

    Работа над новым материалом.

Космические войска – это принципиально новый самостоятельный род войск, который предназначен для:

    вскрытия начала ракетного нападения на Российскую Федерацию и её союзников;

    борьбы с баллистическими ракетами противника, атакующими обороняемый район;

    поддержания в установленном составе орбитальных группировок космических аппаратов военного и двойного назначения и обеспечения применения космических аппаратов по целевому назначению;

    контроля космического пространства;

    обеспечения выполнения Федеральной космической программы России, программ международного сотрудничества и коммерческих космических программ.

В состав Космических войск входят: объединение ракетно-космической обороны (РКО), Государственные испытательные космодромы Министерства обороны Российской Федерации «Байконур», «Плесецк» и «Свободный», Главный испытательный центр испытаний и управления космическими средствами имени Г. С. Титова, управление по вводу средств РКО, военно-учебные заведения и части обеспечения. Объединение РКО включает соединения предупреждения о ракетном нападении, противоракетной обороны и контроля космического пространства.

СИЛЫ И СРЕДСТВА РАКЕТНО-КОСМИЧЕСКОЙ ОБОРОНЫ

На систему предупреждения о ракетном нападении (СПРН) возлагаются задачи получения и выдачи информации предупреждения о ракетном нападении на пункты государственного и военного управления, формирования необходимой информации для системы противоракетной обороны и выдачи данных о космических объектах на систему контроля космического пространства.

Система противоракетной обороны осуществляет обнаружение целей и поражение боевых блоков межконтинентальных баллистических ракет (МБР) противоракетами с исключением детонации их зарядов.

Система контроля космического пространства (ККП) является уникальной. Контролировать космос могут только две державы – Россия и США. В главном каталоге системы ККП Российской Федерации содержится информация почти о 9 тыс. космических объектов.

Силы и средства ККП во взаимодействии с информационными средствами систем ПРН, ПРО и другими информационными системами выполняют задачи контроля космического пространства и выдачи информации о космической обстановке на пункты управления государственного и военного руководства. Системой определяются характеристики и назначение всех космических аппаратов, а также состав орбитальных группировок космических систем России и иностранных государств с их распознаванием.

В условиях возрастания роли космического пространства в решении мирных и военных задач у системы ККП появляются новые задачи: информационное обеспечение поддержки реализации Россией своих прав по использованию космического пространства; информационное обеспечение противодействия средствам космической разведки, в том числе для сохранения мобильной группировки стратегических ядерных сил (СЯС); экологический мониторинг космического пространства; контроль за испытаниями и возможным развёртыванием элементов системы ПРО космического базирования.

Космические войска оснащены ракетами-носителями, командно-измерительными системами, радиолокационными станциями, оптико-электронными комплексами.

ГОСУДАРСТВЕННЫЕ ИСПЫТАТЕЛЬНЫЕ КОСМОДРОМЫ МИНИСТЕРСТВА ОБОРОНЫ РОССИЙСКОЙ ФЕДЕРАЦИИ

Космодром «Байконур» основан в июне 1955 г. Отсюда 12 апреля 1961 г. стартовал первый космонавт планеты Ю. А. Гагарин.

После распада СССР космодром стал собственностью Республики Казахстан. В соответствии с Договором аренды комплекса «Байконур» между Правительствами Российской Федерации и Республикой Казахстан 1994 г. его использование осуществляется Российской Федерацией. Срок аренды комплекса «Байконур» - 20 лет с возможностью его дальнейшего продления.

Общая координация работ, проводимых на космодроме, возложена на Министерство обороны Российской Федерации (Космические войска), а реализация Федеральной космической программы России и программ международного сотрудничества – на Российское авиационно-космическое агентство.

Космодром «Плесецк» является самым северным космодромом в мире (он находится в Архангельской области) и осуществляет запуски космических аппаратов по программам военного, социально-экономического и научного назначения, а также по программам международного сотрудничества.

Космодром «Свободный» создан в соответствии с Указом Президента Российской Федерации Б. Н. Ельцина 1 марта 1996 г.

Благоприятное географическое расположение космодрома «Свободный» в Амурской области позволяет осуществлять запуски космических аппаратов в широком диапазоне наклонений орбит, в том числе на полярные и солнечно-синхронные, более эффективно использовать энергетические возможности ракет-носителей.

    Выводы.

    Космические войска – новый род войск, входящий в Вооружённые Силы Российской Федерации.

    Космические войска обеспечивают контроль космического пространства.

    В основные задачи Космических войск входит уничтожение баллистических ракет противника, атакующих объекты и войска в обороняемых районах.

    Космические войска выполняют разведывательные функции, собирая необходимую информацию для противоракетной обороны нашей страны.

    Вопросы.

    В чём состоит основное предназначение Космических войск?

    Какие космодромы Министерства обороны Российской Федерации вы можете назвать?

    Что входит в задачи Космических войск?

    Почему контроль космического пространства с использованием сил и средств Космических войск так важен для Российской Федерации? Обоснуйте свой ответ.

    Задания.

    Подготовьте сообщение о силах и средствах ракетно-космической обороны страны.

    Используя специальную литературу, подготовьте сообщение об одном из космодромов, используемых Космическими войсками Российской Федерации.

    Напишите реферат об одном из советских или российских лётчиков-космонавтов.

    Дополнительные материалы к §45.

Главный испытательный центр испытаний и управления космическими средствами им. Г. С. Титова

Отправной точкой создания Главного центра испытаний и управления космическими средствами им. Г. С. Титова (ГИЦИУ КС) по праву можно считать Постановление Совета министров СССР от 30 января 1956 г., определившее программу разработки и запусков первых искусственных спутников Земли.

Специалисты ГИЦИУ КС и подчинённых воинских частей совместно с Центром управления полётами обеспечивают все космические программы, начиная с запуска первого искусственного спутника Земли 4 октября 1957 г. Люди в погонах отвечают за состояние практически всех отечественных орбитальных систем – военных, научных, пилотируемых и др. Космическая служба Земли – это спутники связи, навигации, метеопрогноза, картографии, телевещания, ретрансляции и др.

Силы и средства ГИЦИУ КС дислоцированы практически на всей территории Российской Федерации – от Санкт-Петербурга до Камчатки.

Ракета на полигоне

    Окончание урока.

    Домашнее задание. Подготовить к пересказу §45 «Космические войска, их состав и предназначение»; выполнить задания 1-3 (рубрика «Задания», с. 236).

    Выставление и комментирование оценок.

1:44 08/02/2018

0 👁 636

6 февраля 2018 года, в 23:45 минут по московскому времени, частная американская компания SpaceX успешно запустила в космос самую тяжёлую и грузоподъёмную на настоящий момент - . Почему это событие настолько важно для космонавтики всего мира, разбирался журналист Лайфа Михаил Котов.

Из жизни сверхтяжей

Так уж получилось, что в настоящее время в мире не осталось сверхтяжёлых ракет, да и вообще ракет, способных облететь и вернуться обратно. Давно уже стала историей американская , советская Н-1, так и не совершившая ни одного удачного запуска, и “Энергия”, на чьём счету два успешных полёта. была закрыта по причине высокой стоимости, вот и получается, что у человечества нет ракеты для полёта на Луну или осуществления марсианских миссий.

Вообще разделение на тяжёлые и сверхтяжёлые ракеты-носители достаточно условное. Вот, например, российская ракета “Протон”, тоже тяжёлая. Однако в максимальной модификации она может вывести на низкую опорную орбиту 23 тонны, на геостационарную 3,7 тонны, а Луну с её помощью уже не облететь - не хватит топлива и мощности.

В отличие от неё запущенная вчера Falcon Heavу способна вот в таком, возвращаемом варианте вывести на низкую опорную орбиту 34,5 тонны полезной нагрузки. А уж если пожертвовать первыми ступенями, то, согласно расчётам, в космос можно отправить более 55 000 килограммов (63 800кг – прим. ред ). Такого запаса, по расчётам, хватит, чтобы отправить обитаемый космический корабль в путешествие вокруг Луны и обратно. Увы, но пока о высадке говорить не приходится.

В этот раз вместо полезной нагрузки на ракете был установлен личный автомобиль Илона Маска, электромобиль Tesla Roadster. За его рулём сидел манекен в скафандре, на приборной доске красовалась надпись “Без паники!”, а из колонок машины непрерывно неслись песни Дэвида Боуи. В итоге автомобиль будет доставлен куда-то на гелиоцентрическую орбиту, где и станет летать ближайшие несколько миллионов лет. Непрактично, зато, чёрт возьми, красиво.

Возвращаемый рекорд

В итоге мы имеем событие, словно из кирпичиков, составленное из маленьких рекордов. Вчера была запущена самая тяжёлая на настоящее время ракета, при этом она создана частной компанией в достаточно короткие сроки и её запуск стоит беспрецедентно дешево, менее 100 миллионов долларов.

За счёт чего была достигнута такая низкая цена? Всё дело в том, что компания SpaceX просто собрала свою ракету из трёх ракет-носителей среднего класса (центральная ступень, не является ступенью Falcon 9, по словам самого Маска, это “другое изделие” – прим. ред. ). Центральная часть была удлиннена, а в её верхней части разместилась полезная нагрузка. После старта, отработав положенное время, от ракеты отделились два боковых ускорителя, первые ступени ракеты Falcon 9. Они затормозились в и, используя оставшееся топливо и собственные двигатели, вернулись на космодром, где и синхронно сели на специально подготовленные площадки. Теперь эти ступени проверят и используют для следующего старта. А с учётом того, что сели они прямо на космодром, SpaceX ещё и экономит деньги на их доставку в сервисный центр.

Точно такой же финт должна была сделать и первая ступень центральной части ракеты. Она отделилась, затормозилась в воздухе и должна была сесть на плавучую платформу, заботливо оставленную в океане. Однако расчёт оказался неверен, топлива не хватило, сработал только один из двигателей, использовавшихся при посадке, и ступень ухнула в воду с тучей брызг в нескольких метрах от платформы.

Кого коснётся этот запуск?

На данное время Falcon Heavy наиболее грузоподъёмная из всех существующих ракет в мире. Больше неё поднять в обозримом будущем сможет только строящийся проект NASA . На , когда будет собрана, SLS сможет забрасывать от 70 до 130 тонн, что близко к недосягаемому лидеру списка - , использовавшемуся в американской лунной программе. Впрочем, специалисты уверяют, что в данном случае немного разнятся способы подсчёта и, согласно другим данным, SLS может стать самой мощной ракетой в истории человечества. Всего же проект по её созданию до 2025 года съест у американского бюджета 35 миллиардов долларов.

И вот тут главный вопрос? А после того как стартовал Falcon Heavy с объявленной ценой за запуск менее 100 миллионов долларов в одноразовом варианте, стоит ли доделывать огромную и громоздкую SLS, один старт которой будет стоить никак не меньше 500 миллионов долларов. В настоящее время в NASA, скорее всего, созываются серьёзные конференции, где будет решаться судьба этой ракеты.

Задуматься о возможном переделе мест в тяжёлом классе запусков стоит и другим странам, использующим тяжёлые носители, в том числе и России. Пока не известно, за какую цену будет предлагаться возвращаемый запуск, но есть ощущение, что SpaceX способна предложить очень конкурентоспособную цену. Российский сверхтяж, предполагается, совершит первый полёт в 2028 году, если всё пойдёт удачно. Что успеет сделать Илон Маск за ближайшие 10 лет, известно только ему. Однако нам точно нужно ускоряться, чтобы наш родной сверхтяж был востребован.

Как сделать